
Dynamic Non-Hierarchical File Systems for Exascale Storage

Applicant/Institution:
Street Address/City/State/Zip:

Principal Investigator: Darrell D. E. Long
Postal Address: Computer Science Department

Jack Baskin School of Engineering
University of California
Santa Cruz, CA, 95064

Telephone Number:
Email: darrell@cs.ucsc.edu

Funding Opportunity Announcement Number: DE-FOA-0000256
DOE/Office of Science Program Office: Office of Advanced Scientific Computing Research
DOE/Office of Science Program Office Technical Contact: Dr. Lucy Nowell
Budget Table:

Investigator Institution Amount Requested ($)
Year 1 Year 2 Year 3

Long, Darrell (PI) UCSC 37,696 38,826 39,991
Miller, Ethan (Co-PI) UCSC 13,146 13,539 27,891

0-1

8 PROJECT NARRATIVE
8.1 Project Objectives
The ultimate goal of this project is to improve data management in scientific computing and high-end com-
puting (HEC) applications, and to achieve this goal we propose:

• To develop the first, HEC-targeted, file system featuring rich metadata and provenance collection,
extreme scalability, and future storage hardware integration as core design goals.

• To evaluate and develop a flexible non-hierarchical file system interface suitable for providing more
powerful and intuitive data management interfaces to HEC and scientific computing users.

8.2 Introduction and Motivation
Data management is swiftly becoming a serious problem in the scientific community – while copious
amounts of data are good for obtaining results, finding the right data is often daunting and sometimes
impossible. Scientists participating in a Department of Energy workshop noted that most of their time was
spent “...finding, processing, organizing, and moving data and it’s going to get much worse” [2]. Indeed,
the Large Synoptic Survey Telescope (LSST) [99] is expected to produce around 20 terabytes of data every
night, obtaining repeat exposures of the entire night sky. Scientists should not be forced to become data
mining experts in order to retrieve the data they want, nor should they be expected to remember the naming
convention they used several years ago for a set of experiments they now wish to revisit. Ideally, locating
the data you need would be as easy as browsing the web.

Unfortunately, existing data management approaches are usually based on hierarchical naming, a 40
year-old technology designed to manage thousands of files, not exabytes of data. Today’s systems do not
take advantage of the rich array of metadata that current high-end computing (HEC) file systems can gather,
including content-based metadata and provenance1 information. As a result, current metadata search ap-
proaches are typically ad hoc and often work by providing a parallel management system to the “main”
file system, as is done in Linux (the locate utility), personal computers [11], and enterprise search ap-
pliances [35, 56]. These search applications are often optimized for a single file system, making it difficult
to move files and their metadata between file systems. Users have tried to solve this problem in several
ways, including the use of separate databases to index file properties [91], the encoding of file properties
into file names, and separately gathering and managing provenance data [39], but none of these approaches
has worked well, either due to limited usefulness or scalability, or both.

We propose an integrated data storage system, targeted at exascale systems, with improved content
management and an improved interface. By integrating metadata, file content, and provenance into a single
system, any changes made can be indexed immediately, significantly increasing the power and usefulness
of a subsequent search. Such searches, in turn, would allow users, and this is particularly relevant for
scientific computing users [2], to spend more time accessing their data, as opposed to locating and moving
it. For example, imagine that we find that program Y has a bug. A user might want to find all output files
from experiment X containing data tainted by the buggy program, so that the files could be reprocessed
with a corrected version of program Y . This query requires both provenance and tag-based metadata; the
provenance identifies the files tainted by Y and the tag-based metadata identifies the files that are part of
experiment X .

Richer metadata and provenance information, integrated into the underlying file system, allows for more
flexible and user-oriented access to the data. For example, enhanced metadata and provenance can be lever-
aged to provide statistics about the data in the system, aiding in more accurate query results. Retrieving
statistics based on the metadata and provenance of the data could let us dynamically create signature files
which are completely up to date with the current state of the system. In this way, the search space can

1Provenance, or lineage, is information about the inputs and processes used to create a particular file.

8-1

accurately be narrowed to only results matching the user’s query. Since the additional functionality and
metadata is provided as an integral part of the file system, there is no longer a need for names to be static
paths: directories and file names can be queries into an index. This provides multiple ways to access the
same piece of data, freeing the user from remembering an arbitrary static path. The benefits of this approach
go beyond an improved mechanism to deal with file naming challenges, it also offers a more flexible and
efficient interface for different user classes. For example, if the same underlying data set is being used by
multiple scientists from different fields, a dynamic naming scheme would allow each scientist to be provided
with access to the data in a customized fashion optimized to their distinct purposes.

Without such enhanced functionality in a scalable system, scientific and HEC users are in desperate
need of improved data management, particularly if HEC systems are to scale and remain usable. Existing
technologies are both too specialized and impractical for exascale computing [2]. No existing file system
is suitable, and any attempt to simply layer functionality atop existing HEC file systems comes with a
performance penalty, which such systems are least prepared to tolerate. We propose a novel solution building
on proven technology that we have developed to design a new file system with the required functionality an
integral part of file system design and not an added afterthought to an existing infrastructure. By pursuing
a file system we aim to offer the most general data management solution possible to scientific computing
users, without the added overheads of ill-matched database systems [2]. Our goal in taking this approach
is to provide an exascale data storage system that can be easily built upon to meet specific HEC user needs
thanks to improved functionality and richer metadata, features that would simultaneously allow the support
of legacy data and interfaces.

8.3 Proposed Research
Our goal in developing this system is twofold: we want to hide and improve the operation of the system
through automation and improved data management, and we wish to target and extend the facilities avail-
able to scientists through improved metadata and provenance collection, management, and interfaces. The
proposed solution looks at designing a novel file system architecture that integrates file content, metadata,
and provenance. A new architecture is long overdue – few people today would want to entrust their life
savings to a bank whose systems haven’t been updated since 1970; nor should scientists have to entrust
their data to a similarly outdated architecture. Existing high performance file systems offer general-purpose
usefulness, but not the provenance and enhanced functionality needed to reduce the data management effort
of users. While this missing functionality could be provided by relational database systems, or through
the layering of the functionality atop existing file systems, neither solution offers enough flexibility to be of
general use, or the necessary performance to be suitable for exascale computing. To provide HEC users with
a general purpose data management system that is functional, flexible, and of general usefulness (including
compatibility with legacy data and file system interfaces) we propose to develop a novel file system that
includes the requisite provenance and rich metadata management from the offset.

To develop such a file system, several major goals need to be achieved. Specifically:

• High-performance, real-time metadata harvesting: extracting important attributes from files dynami-
cally and immediately updating indexes used to improve search.

• Transparent, automatic, and secure provenance capture: recording the data inputs and processing
steps used in the production of each file in the system.

• Scalable indexing: indexes that are optimized for integration with the file system.
• Dynamic file system structure: our approach provides dynamic directories similar to those in semantic
file systems, but these are the native organization rather than a feature grafted onto a conventional
system.

In addition to these goals, our research effort will include evaluating the impact of new storage technolo-
gies on the file system design and performance. In particular, the indexing and metadata harvesting functions

8-2

can potentially benefit from the performance improvements promised by new storage class memories. The
efficient use of such technologies in storage systems software is a current and active research effort for the
PIs [8, 38, 55, 70], and our design will be executed in anticipation of upcoming opportunities and changes to
the storage hardware landscape.

To meet the above goals, we will address four major research areas: metadata management; provenance;
scalable indexing; and non-hierarchical name spaces. The maintenance of richer metadata presents chal-
lenges to the efficient representation, storage, and retrieval of such information. Provenance in particular
is a particularly useful form of metadata, and offers the added challenge and opportunity of automating its
capture and its efficient representation. All the additional metadata being collected and stored will need to
be indexed and located efficiently, as the system grows to exabyte scales. Finally, once all this enhanced
metadata has been efficiently captured, stored, and indexed, it is essential to effectively provide the most
flexible and useful interface to the new file system, and to this end we will leverage and extend the state of
the art in non-hierarchical namespaces.

8.4 Metadata Management
File system metadata should be treated as an aid to managing and accessing data and not a rigid and limited
structure to which the user must conform. To this end we propose to enhance metadata management to
provide seamless support for a search-based dynamic interface to the files. File system search provides
a clean, powerful abstraction from the file system. It is often easier to specify what one wants using file
metadata and extended attributes rather than specifying where to find it [88]. Searchable metadata allows
users and administrators to ask complex, ad hoc questions about the properties of the files being stored,
helping them to locate, manage, and analyze their data.

Unfortunately, metadata search applications face several limitations in exascale systems. First, search
applications must track all metadata changes in the file system, a difficult challenge in a system with billions
of files and constant metadata changes. Second, indexes must be kept up-to-date, with changes reflected
immediately, to prevent a search from returning very inaccurate results. Keeping the metadata index and
“real” file system consistent is difficult because collecting metadata changes is often slow [51, 92] and
search applications are often inefficient to update [3]. Third, search applications often require significant
disk, memory, and CPU resources to manage larger file systems using the same techniques that are successful
at smaller scales. Thus, a new approach is necessary to scale file system search to large-scale file systems.

Our approach to metadata management will be designed and developed in the context of a HEC file sys-
tem that separates metadata service from bulk data service, such as PVFS [21], Lustre [85], or Ceph [100].
By following this approach, we can test our techniques in a prototype metadata server (MDS) that can be
used as a drop-in replacement for the existing MDS. We may need to add hooks to gather information—
provenance and content-based metadata, for example—into the client file system component as well, but the
majority of the techniques can be implemented in a separate server that we will make available to the HEC
community.

When designing our system there are two goals we are aiming to achieve. First, we want a metadata
organization that could be quickly searched. Second, we want to provide the same metadata performance
and reliability that users have come to expect in other high performance file systems. We focus on the
problems that make current designs difficult to search, leaving other useful metadata designs intact. Our
design leverages metadata specific indexing techniques we developed in Spyglass [61]. We plan to build
upon the technologies we are in the process of developing:

• The use of a search-optimized metadata layout that clusters the metadata for a sub-tree in the names-
pace on disk to allow large amounts of metadata to be quickly accessed for a query.

• Efficient routing of queries to particular sub-trees of the file system using Bloom filters [15].

8-3

Figure 1: Metadata clustering. Each block corresponds to an inode on disk. Shaded blocks labeled ’D’ are directory
inodes while non-shaded blocks labeled ’F’ are file inodes. In the top disk layout, the indirection between directory
and file inodes causes them to be scattered across the disk. The bottom disk layout shows how metadata clustering
co-locates inodes for an entire sub-tree on disk to improve search performance.

• The use of metadata journaling to provide good update performance and reliability for our search-
optimized designs.

8.4.1 Metadata Clustering
Accessing metadata often requires numerous disk seeks to access the file and directory inodes, limiting
search performance. Though file systems attempt to locate inodes near their parent directory on disk, inodes
can still be scattered across the disk. For example, FFS stores inodes in the same on disk cylinder group
as their parent directory [67]. However, prior work has shown that inodes for a directory are often spread
across multiple disk blocks. Furthermore, directory inodes are not usually adjacent to the first file inode
they name, nor are file inodes often adjacent to the next named inode in the directory [30]. We illustrate this
concept in the top part of Figure 1, which shows how a sub-tree can be scattered on disk.

We propose addressing this problem using metadata clustering, a concept similar to embedded in-
odes [30] which store file inodes adjacent to their parent directory on disk. Metadata clustering goes a
step further and stores a group of file inodes and directories adjacent on disk. Metadata clustering exploits
several file system properties. First, disks are much better at sequential transfers than random accesses.
Metadata clustering leverages this to pre-fetch an entire sub-tree in a single large sequential access. Sec-
ond, file metadata exhibits namespace locality: metadata attributes are dependent on their location in the
namespace [6, 61]. For example, files owned by a certain user are likely to be clustered in that user’s home
directory or their active project directories, not randomly scattered across the file system. Thus, queries will
often need to search files and directories that are nearby in the namespace. Clustering allows this metadata
to be accessed more quickly using fewer I/O requests. Third, metadata clustering works well for many
file system workloads, which exhibit similar locality in their workloads [63, 83]. Often, workloads access
multiple, related directories, which clustering works well for.

While clustering can improve performance by allowing fast pre-fetching of metadata for a query, it can
negatively impact performance if clusters become too large, since such clusters that are too large waste disk
bandwidth by pre-fetching metadata for unneeded files. We continue to research optimal cluster size and

8-4

clustering algorithms that re-balance cluster distributions over time.

8.4.2 Query Execution
Searching through many millions of files is a daunting task, even when metadata is effectively clustered
on disk and indexed. Fortunately, as we mentioned in Section 8.4.1, metadata attributes exhibit namespace
locality, which means that attribute values are influenced by their namespace location and files with similar
attributes are often clustered in the namespace.

We will leverage clustering by keeping summaries of attributes for each cluster in a set of signature
files [27]—compact bit arrays describing the contents of the cluster—and searching the signature files for
all clusters to identify specific clusters that might contain results for the query because their signature files
indicate that files in that cluster have all of the desired attribute-value pairs. Because signature files, like
Bloom filters [15], use hashing to set bit positions and because signature files do not capture information
about whether a combination of attribute-value pairs is present in a single file, there is the potential for false
positives; however, the use of signature files allows theMDS to quickly rule out the vast majority of metadata
clusters and apply the more computationally-expensive full search and similarity engines to only those
clusters that potentially have relevant results for the current query, dramatically improving scalability. Even
this has trouble scaling to exascale systems; we will investigate applying hierarchical clustering techniques
to narrow the search space with broad Bloom filters at higher levels.

8.4.3 Cluster-based Journaling
Search-optimized systems organize data so that it can be read and queried as fast as possible, often causing
update performance to suffer [3, 98]. However, file systems require both fast search performance and rapid
update. Our approach facilitates fast update by combining logging and index partitioning. Logging allows
the system to delay updates to the cluster’s primary, highly-compressed index at the cost of more expensive
searches of recent metadata updates in the log. By maintaining a per-cluster log, however, we limit the
amount of logged information that must be searched.

Logging updates allows users to pose “time-traveling” queries over past metadata versions, helping
them gain information about how and when their files changed. As metadata is added to a cluster’s log,
the signature files for the cluster are updated; thus, index searches need only consider logs for clusters that
might contain relevant results. Logging also allows updates to the index to be batched, amortizing the cost
of rebuilding the optimized index for the cluster across many metadata modifications. We expect that file
activity will be concentrated in relatively few clusters at any given time; thus, our approach of partitioning
the log as well as the primary index will aid in scalability. While updates to existing files are sent to the
cluster that already contains metadata for the file, techniques for deciding which cluster receives new files’
metadata are discussed in Section 8.6.3.

8.5 Provenance: Effective Attribute and Provenance Collection
Provenance information is a critical part of file system metadata information, since it provides insight into
the processes that created a particular piece of data. Previous work has demonstrated that provenance infor-
mation can be efficiently captured and stored for relatively small data collections [75, 76]; we will expand
on this work to integrate provenance collection and management across exabyte-scale storage with billions
of files. We will also address the security issues that were identified in earlier work, specifically, secur-
ing provenance [16, 76], using provenance to prove authenticity [43], and dealing with implicit information
flows. In some cases, provenance requires more restrictive access controls than the data it describes and
sometimes it requires less restrictive controls. In the absence of a consistent default assignment of prove-
nance access controls, we must address the challenge of designing a suitable security system and making
it intuitive and easy to use. Regardless of the restrictiveness of the access controls, we also need to ensure
that provenance is tamper-proof, so that adversaries cannot revise history by changing provenance. Finally,
while most provenance systems capture explicit information flow, implicit flows (things that result from

8-5

events not happening) pose a particularly significant challenge. Current systems record object reads only if
they later lead to writes, but for completeness, we would need to capture all reads, regardless of whether
they led to later writes or not. Unfortunately, the overhead of doing so is prohibitive, thus an open question
is determining an acceptable compromise. We will develop techniques for managing provenance at exabyte-
scale along with other metadata, for guaranteeing integrity of provenance that records sufficient operations
to recreate both the inputs and the workflow that generated a particular piece of data, and for efficiently
extracting file attribute and inter-file relationship information from the file system.

There are several key challenges that need to be addressed to meet this goal. First, there must be an
infrastructure in place for extracting information from the file system. This infrastructure must be able
to gather both information from files themselves and the context in which they are used. Second, this
infrastructure must be fast and efficient. It is critical that extracted information be closely consistent with
the file system because the query interface is the only naming interface in the file system. Thus, our system
must be able keep up with the rate of modifications to the file system. Third, extracting information must not
significantly degrade native file system performance; crawling file content or monitoring inter-file operations
may utilize file system resources, potentially diminishing file system throughput.

We are developing new scalable techniques for extracting file metadata. Basic metadata—information
currently stored in inodes and small-scale extended attributes—are easily handled by our approach, since
updates can be sent directly to the MDS. Since they are relatively small, it is likely that they will only be
updated by a single client even for a large file; thus, handling such updates requires relatively few MDS
resources. However, file content in a HEC system is orders of magnitude larger than basic metadata [6],
and extracting metadata from HEC files can be computationally and I/O intensive. Thus, we will rely upon
transducers that are customized to each type of file. Content indexing can be done in one of two ways: MDS-
driven or client-driven. For MDS-driven indexing, the MDS can easily note files that have been opened for
writing and issue requests to have transducers run on them. By targeting content extraction to just those
files, our system can quickly derive new metadata for modified files. Alternatively, the client could start the
transducer as needed; we will explore tradeoffs between these two approaches.

It is impractical for our team to write transducers for every type of file that might be encountered;
instead, we will adopt an approach similar to that used by Spotlight [12]: our system will provide an API
that transducers can use to send content-derived metadata to theMDS. Unlike Spotlight, however, our system
must accommodate per-file metadata that comes from multiple nodes simultaneously, since it is likely that a
transducer will run on multiple client nodes or multiple data server nodes. We will explore approaches that
coalesce metadata before it reaches the MDS, reducing the network, I/O and CPU load on the MDS.

Another critical issue is the ability to extract file relationships and context information from the file
system, including information such as provenance [76, 89] and temporal context [93]. In our system, re-
lationships between files are first-class entities, and can have tags and ownership information associated
with them. Tracking such relationships requires monitoring calls to the file system (e. g., open() and
close()) and providing additional API calls to explicitly establish relationships between files [8]. In ad-
dition to providing API calls to explicitly link files, our system will implicitly gather provenance and other
relationship information by monitoring processes on client nodes, and will coalesce that information either
at the client level or on the MDS. Coalescing before the information reaches the MDS has the advantage of
reducing the MDS load, but may be more difficult because of the need for many-to-many communication to
do so.

We will explore the use of upcoming storage-class memory technologies and novel integrations of these
technologies with log-structuring of metadata. In order to improve the latency, and potentially throughput,
of metadata gathering, we will store incoming metadata in a non-volatile log. This approach is common
in databases [37] and file systems [46]; we will explore the use of non-volatile memories such as flash and
phase-change RAM (also called storage class memories) to hold the log, greatly improving performance
over disk-based approaches. Using a log has a second advantage: it allows the system to retain older

8-6

versions of metadata, allowing users to do searches over historical information, to answer questions about
which files have changed, and how they have changed.

8.6 Scalable Indexing
One major challenge we will address is the construction of a scalable indexing structure capable of handling
the billions of files stored by an exascale computer. This metadata index must be distributed, both because of
the amount of data it must manage and because of the speed at which it must run. The index must handle both
updates and queries quickly—even at high throughput, a latency longer than 10–20ms will be noticed by
users. While existing techniques can be used to build a high-performance index for hierarchical data [61],
significant challenges remain in building an index that can handle file metadata, content-based metadata,
tags, and provenance. Our research will explore tradeoffs in partitioning, distribution, and replication that
allow the metadata index to scale to thousands of requests per second across billions of files. Unlike Web
indexes, our metadata indexes must be dynamic, both because of newly created provenance data and because
of varying metadata and views that different users may have; both of these dynamisms can be used to
improve the quality of search results. In addition, we will explore approaches that allow the system to
efficiently harvest file metadata and provenance for inclusion in the index.

Providing good performance and scalability for file search in an exascale system requires new indexing
solutions. Existing file search systems rely on general-purpose, off-of-the-shelf solutions, such as relational
database systems [91]. However, these systems are typically designed for other workloads, such as business
processing, and thus make few file search optimizations [94, 95]. As a result, they lack the performance
and scalability to address file search at large scale. In addition, the large scale of HEC systems makes it
impractical to address performance by simply adding more hardware, both because supplying hardware at
the rate of data growth is often prohibitively expensive, and database search often does not scale linearly in
the number of nodes. Instead, a file system search index must leverage file system and workload properties
to achieve the necessary performance.

Existing solutions handle relationships between files poorly, if at all. However, our approach to metadata
requires that we efficiently store and index relationships ranging from explicitly-defined and provenance-
dictated links, to inferred relationship links. Thus, our index must efficiently store a directed graph with
billions of nodes across a distributed set of metadata servers and allow that graph to be searched and updated
in milliseconds. Meeting these goals is a key challenge for this research.

8.6.1 Indexing Metadata and Content
The approach we are proposing provides an index for two types of per-file metadata: simple metadata and
content-based metadata. Simple metadata is structured as 〈attribute,value〉 pairs, with attributes including
inode fields (e. g., size, owner, timestamps) and extended attributes (e. g., document title, experiment param-
eters, funding information). Short tags derived from content are considered simple metadata, since they are
small and readily indexed using the same techniques as other simple metadata. Content-based metadata,
however, is quantitatively different from simple metadata: it can represent megabytes of data per file. For
example, the content-based metadata for a text file might include a postings list [101]—a set of 〈term,count〉
pairs for each term (word) in the document, and the content-based metadata for a climate simulation might
include a low-resolution map or set of climate conditions at specific points from various time samples.

Searching against the different types of metadata also uses a different process. Simple metadata can
be compared using relatively static evaluations, similar to those provided in a relational database system:
string equality, regular expressions, and numeric comparisons. However, content-based metadata is often
evaluated for similarity to an exemplar; for example, a user might search for climate simulation results
similar to the one she just produced. Similarity evaluation requires more computation, and may also require
application-specific routines to compute a similarity metric. Thus, we will provide an API, akin to that for
transducers to provide metadata, that allows HEC users to supply routines to evaluate similarity between

8-7

Figure 2: Metadata clustering example. Metadata clusters, partitions, shown in different shades, index different
partitions of file system metadata. Each partition is stored sequentially on disk. The entire file system metadata index
is composed of the set of all metadata clusters.

multiple files of similar type. As with transducers, it will be impractical for our team to write all possible
similarity engines; in order to test our approach, we will develop several similarity engines for plain text
files and one or two other sample HEC applications.

To provide reasonable search performance, we propose that metadata be partitioned into clusters, as
discussed in Section 8.4.1. Our system will maintain multiple search structures for each cluster, leveraging
existing research in distributed metadata [25, 79, 100] and expanding it to efficiently handle billions of files.
In our approach, one structure in each cluster indexes all of the “simple” metadata; we are currently using
a kd-tree [14] to store this information because it provides fast multidimensional search across multiple
attributes. K-D trees are similar to binary trees, though different dimensions are used to pivot at different
levels in the tree. K-D trees allow a single data structure to index all of a cluster’s metadata. A one-
dimensional data structure, such as a B-tree, would require an index for each attribute, making reading,
querying, and updating metadata more difficult.

While K-D trees are good for multi-attribute queries, they are less efficient for some common operations.
Many file systems, such as Apple’s HFS+ [10], index inodes using just the inode number, often in a B-tree.
Operations such as path resolution that perform lookups using just an inode number are done more efficiently
in a B-tree than a K-D tree that indexes multiple attributes, since searching just one dimension in a K-D tree
uses a range query that requires O(kN1−1/k) time, where k is the number of dimensions and N is the size
of the tree as compared to a B-tree’s O(logN) look up. We will therefore continue to explore different data
structures for efficient search.

Content-based metadata in the cluster, in contrast, must be stored in optimized structures particular to the
needs for each similarity engine. Techniques for storing inverted indexes for text are well-known [59, 101],
and typically involve a dictionary of in the partition along with a postings list that contains the exact location
(file, and perhaps offset within the file) of each occurrence of a term. Satisfying a query thus involves
a mathematical function across sets of postings lists for different terms; many such functions have been
proposed. Our challenge is to provide the flexibility to allow different similarity engines to manage their
own optimized structures, since non-text similarity may require different approaches to storing “terms.”
Meeting the challenges in providing a general indexing mechanism for non-text content-based indexing by
allowing similarity engines to manage both an optimized primary search structure and a log with updates is
one of our major research goals.

Individual cluster indexes will be stored sequentially on disk or other non-volatile medium, allowing
them to be quickly read into RAM and decompressed on the fly. Our earlier work has shown that file

8-8

system activity, including queries, tends to be focused in relatively small parts of the file system at any given
time, though the specific areas of interest vary over time. Thus, caching is likely to be highly effective at
ensuring that relevant partitions are already loaded into RAM and ready for high-speed search. However,
the effectiveness of different metadata attributes at limiting the scope of full search to a few clusters and
improving the effectiveness of caching is an open question that we will explore.

We have some background in evaluating the effectiveness of attributes on limiting the scope of clusters
to be searched, specifically the file ownership and permissions attribute. Security Aware Partitioning is
a new algorithm we developed to support fast, scalable search, while maintaining the security of files.
Since not every user has access to every file, displaying search results that are not accessible to a user
is both insecure and poor user interface design. A list of results should only contain documents which are
accessible to the user initiating the search. Unlike other partitioning schemes, which must apply an expensive
filtering operation after results have been collected to enforce these restrictions, Security Aware Partitioning
takes these requirements into account when building the partitions. This increases search efficiency and
can prevent statistical attacks on ranked search, such as the one demonstrated by Büttcher [19]. In our
partitioning scheme, if someone has permission to access one file in a partition, he can access every file
in that partition. However, it is necessary to determine access in a way appropriate for the security model
of the underlying file system. More details and preliminary results are discussed in Section 8.9. While
these results are hopeful, we will continue to evaluate the effectiveness of other attributes as well, including
explicitly-supplied tags, file type, and others on limiting the scope of clusters that must be searched.

We will also expand on the functionality provided by file system indexes, providing features not typically
available in current file systems and search indexes. There are several critical components to make search
practical for everyday, real-world use. First, search must enforce file security, however, doing so efficiently is
not straightforward [13, 19]. Our techniques allow security information to be used during index partitioning
and embedded within each partition. Doing so allows us to eliminate partitions with improper permissions
from the search space, improving performance and potentially altering the ordering of returned results.
Second, search must allow the combination of per-file metadata with graph-based information, described in
Section 8.6.3, to permit searches that find relevant “nearby” files. This functionality is not present in current
Web-based searches: there is no way to find a page to which a given page links that contains a certain term,
for example.

8.6.2 Indexing File Content
In addition to searching file metadata, most users need to be able to quickly search the contents of their files.
Unlike metadata, which is structured 〈attribute,value〉 pairs, file content is often a collection of unstructured
keywords, and there are often orders of magnitude more keywords associated with a file than there are
attributes.

Content search performance is limited by dictionary lookup and posting list retrieval times. Unfortu-
nately, achieving good performance in a large file system is difficult for two key reasons. First, the scale
of these systems makes retrieval a challenge because the dictionary can contain billions of keywords and
posting lists can be long and fragmented on disk. Second, extracting keywords from many rapidly changing
files and modifying on disk posting lists is often slow and can tax the file system.

We are addressing these difficulties with new inverted index designs that are tailored for large-scale file
systems. This first entails an analysis of keyword distributions in large file systems. A keyword analysis
provides us with valuable insights into what an effective design should contain. Using this information
we will develop new inverted index designs with storage layouts and retrieval mechanisms that are more
efficient for file system search workloads [62]. Techniques similar to those used for metadata search [61],
such as hierarchical partitioning, may be helpful. Partitioning can break long term posting lists into smaller,
sequentially stored units, called segments that can be efficiently retrieved and updated. To manage these
partitions we can use an indirect index that that allows retrieval of individual segments. In an indirect index

8-9

each dictionary entry points to a posting list of segments rather than the entire posting list of keyword
locations. Using this design, queries need only retrieve the small segments that match a query rather than
entire posting lists. Additionally, updates can read, modify, and write small sequential lists rather than very
long lists.

8.6.3 Indexing Provenance and Relationships
Provenance data and generic relationships between files consist of both 〈attribute,value〉 pairs and a directed
acyclic graph of relationships. All of the approaches discussed for storing metadata can be applied to storing
〈attribute,value〉 pairs for provenance and other relationships, so we need not design any special purpose
indexing for those. The graphical structure of provenance and inter-file relationships, however, does require
specific work on index creation, efficient graph-structured storage, and graph-aware search algorithms.

A provenance graph contains nodes both for persistent objects, such as files, as well as transient objects,
such as processes and inter-process communication. An object’s parents are the inputs used to produce that
object and its children are items that derive from the object. As a concrete example, assume that process
P reads files A and B, producing file C. The provenance graph that describes this execution has A and B as
parents of P andC as a child of P. By transitivity,C is a descendent of both A and B.

The first important observation is that once an object is completely created, we know all of its parents, but
not all of its children. This observation drives an ancestry-oriented organization, where nodes can be easily
indexed through ancestor relationships, but not descendant relationships. We record parent relationships as
named 〈attribute,value〉 pairs, where the attribute is the kind of parent (e. g., an input file, a parent process,
a container relationship) and the value identifies the parent.

The second observation is that queries on provenance relationships revolve around paths—sequences of
nodes in the ancestry graph. For example, identifying all the files tainted by a buggy program is a query for
the files in the subtree emanating from the buggy program.

Combining these two observations suggests that path and sub-trees are important to represent explicitly,
but that sub-trees are problematic, because they require descendant relationships. Building upon the model
used for storing other metadata discussed in Section 8.6.1, we can create descendant indexes lazily in each
batch as well as path indexes that capture sets of ancestry relationships.

The second challenge to address is one of efficient graph storage. Conventional stores for provenance
and other file relationships use one of a relational, XML, or RDF-based representation. XML representa-
tions are tree-based and do not generalize well to DAGs. Both relational and RDF-based representations
store individual edges, so path queries become iterative or recursive queries along edges. While producing
correct results, such queries are difficult for users to formulate and even more difficult to execute efficiently.
The second version of the PASS system [74] uses a native 〈key,value〉 pair representation, using Berkeley
DB [78]. While adequate, it too suffers from requiring iteration up (and down) the ancestry tree.

We will address this search problem through our path indexes. Path indexes use the statistical properties
of the provenance graph to identify nodes with the greatest information content. Deriving from similar
graphical analysis of the web [57, 58, 81], we can assign nodes in the provenance graph a slowly-changing
provenance rank. Preliminary investigation in the context of PASS suggests that large changes in provenance
rank as one traverses ancestry indicate a transition from a node with high information content to one with
less information content. We can use these gaps in provenance rank to identify collections of nodes that
should be stored together and indexed as a single path. Existing work on graph isomorphism can be used
to identify patterns in the provenance graph which are equivalent, and condense it into a more compact
representation.

Provenance and other file relationships will also be useful in determining clustering for our partitioned
index. A single large relationship graph does not scale well to the billions of files in HEC file systems be-
cause it is too slow to query and too large to update efficiently. Instead, we will use the density of provenance
relationships and other inter-file relationships to determine how to partition file metadata into the clusters

8-10

described in Section 8.6.1. By using relationship information to determine clustering, we will dramatically
increase the likelihood that detailed search need only be done on a small fraction of the metadata clusters,
greatly improving scalability. However, there are open questions for this approach that we must explore.
First, we will investigate existing approaches for clustering in graphs [24, 40, 54, 93], and evaluate their
suitability for a provenance and relationship graph. Second, we must determine whether a file’s metadata
must be stored in a single cluster, or whether it may be replicated in multiple nearby clusters. Consistency
is more difficult if a file is in multiple clusters; however, search performance may improve if a file can be
stored in multiple clusters because a particular query may only reference one of the clusters in which the file
resides. Third, there may be a point of diminishing returns as provenance linkages become more tenuous
due to distance or age. Initial work on pruning provenance already exists, and we can further explore this
research area to improve search resultt and performance.

Adding rich metadata and linking also opens up new horizons in file system search and personalization.
Linking information can be used to identify context and find clusters of files [89], but it can also be used to
identify users with similar interests and needs. Personalization can be achieved by tracking file dependencies
and other relationships, and presenting the user related results, or by ranking results according to how “close”
in the semantic graph they are to the user’s files. We intend to explore the benefits of these and other novel
personalization algorithms to present better results to individual users.

Our research in this area will therefore require four activities: analyzing provenance rank in large,
HEC storage systems, developing techniques to use provenance rank and other relationships to construct
efficient path indexes, designing and developing efficient storage structures for these path indexes, and
using relationship information to partition the metadata into smaller, more manageable clusters.

8.7 Non-Hierarchical Name Space: Novel Approaches to Naming and Search
There is a clarion call for file systems that no longer rely on hierarchy to organize content. From Inver-
sion [77] and LiFS [8] to iTunes [1] to Seltzer’s position paper that “hierarchical file systems are dead” [88],
systems are moving towards rich metadata and search for organizing and finding content. On such a file
system, fast high quality search over metadata and content is more important than ever, since the hierarchy
can no longer be used to navigate and find information. How well do these algorithms perform when the file
system no longer has explicit hierarchy?

However, while high-performance, scalable metadata indexes are a key factor in facilitating better use of
HEC file systems, providing powerful yet easy-to-use methods for accessing the indexes is just as critical.
If users cannot easily access the file system, a high-efficiency indexing system is of little use. This section
describes the research we will do to make our approach to file management both easy-to-use and sufficiently
powerful to provide new functionality to HEC users.

Our solution must be easy-to-use, yet sufficiently expressive to allow advanced users or special-purpose
software tools to provide advanced functionality such as complex searches for hard-to-find data and listings
of files that must be regenerated because of a bug fix in a particular software package. Our approach to
naming files must also be a superset of POSIX naming, since it is unrealistic to expect users to abruptly
switch to a different naming convention. Instead, we will provide an approach that combines POSIX-style
naming with more powerful, extensible naming schemes that facilitate dynamically-generated directories
based on file attributes including metadata and provenance as well as per-user personalization. Our team
already has some experience with languages for file naming [9], providing a strong foundation for this
research.

8.7.1 Search-Oriented File Systems
A critical issue for managing files in HEC file systems is ensuring that users can easily find the files they
need. However, existing systems use hierarchical file naming as their primary index, an approach whose
limitations have engendered the creation of alternative parallel search systems [91] to help HEC users find

8-11

their data. We are taking a different approach by using a search-based interface as the only interface to the
file system namespace. Our new architecture improves semantic file system performance and scalability
by providing a combined indexing and storage layer on which semantic namespaces [8, 32, 36, 49] can be
built. Thus, we must ensure that the interface is easy-to-use and has sufficient expressiveness to allow
the construction of queries to pose complex but useful questions. We must also ensure that we present an
interface that will allow users to continue using their familiar POSIX interface, gently migrating to our more
flexible approach as need arises.

Because the scalable index and graph described in Section 8.6 is the only metadata structure in the file
system, all references to files and “directories” are queries against the structure. There are several language
approaches for constructing queries that include both file attributes and path information [8, 9, 47], and we
will expand upon this work to develop an expressive query language that both users and applications can
use to specify files and groups of files. Queries in this language can return zero files (“file not found”),
exactly one file, or multiple files, which would correspond to a directory. Simply returning an unordered
list of files would not be appropriate for a directory, which might contain thousands of files; instead, part of
our research into path queries will explore the use of grouping, as is currently done in SQL. Our interface
must also include a mechanism for queries such as “find files like this one.” Designing a language that can
provide such expressiveness without being too complex for simple uses is a key challenge for this research.

Web users are familiar with the problem of “information overload” in response to a search query; we
will reduce this problem in our system by facilitating searches that are restricted to a local region of the
provenance and relationship graph. This combination of file relationship information and per-file metadata
has strong promise to greatly improve the quality of searches in a file system with 1018 files, so we will
explore approaches that allow queries to include this information. Since relationships can themselves have
〈attribute,value〉 tuples, our language should allow queries to consider only particular links in establishing
distance; this will allow queries to be restricted to files that are nearby or related from a particular user’s
point of view.

Including per-user personalization, context, and ownership information into the query is another chal-
lenge we will address. Web searches typically include little, if any, per-user context, yet such context is
critical in finding appropriate files [89, 93]. Much of this information can be provided implicitly by having
the file system monitor the files that have been used and including a digest of that information with each
query sent to the file system. While file ownership information is straightforward to use, the decision of
which file access information to gather and how to digest it is an open question that we will investigate.

By associating a 〈POSIX NAME,filename〉 tuple with well-chosen inter-file relationships and creating
null-content files to act as “directories,” we can import an existing POSIX hierarchy into our system, al-
lowing it to be used on already-extant file systems. This allows users and updated applications to take
full advantage of flexible, dynamic search-based naming, while preserving POSIX functionality for legacy
applications running on the same files.

8.7.2 New Functionality
By including both path-based information and per-file metadata in queries, our approach enables HEC users
to find information that was previously either unavailable or difficult to obtain. To demonstrate the power
and utility of the language that we will develop as part of this research, we will provide prototype queries
that will immediately improve workflow for HEC users.

One area of immediate concern for HEC users is data provenance, yet prior efforts to manage prove-
nance for scientific users have been limited and implemented as ad hoc additions on top of an existing file
system [29, 39]. While it is important to rerun computational experiments in response to the discovery (and
repair) of software bugs, it is impractical to rerun every such experiment. Our metadata index allows users
to easily identify files that both need to be updated to reflect new software or other inputs and are widely
used as inputs to other files. By constructing a tool to build a workflow to update the most critically needed

8-12

files that need regeneration, we will demonstrate the power of the system we design.
A second area of concern for HEC users is the quality of stored data. Data gathered by observation can

be tagged with a quality metric corresponding to the trustworthiness of the data source. Derived data can
then be assigned a quality metric that is a function of the quality of both its input data and the processing
that was applied to it—some processes may be more trustworthy than others, perhaps because of better
algorithms or more rigorously tested code. Again, we will build a tool to demonstrate the ability of our
system to provide this information to HEC users.

UCSC is currently funded by NASA to work on a 1 year pilot project to provide terrestrial sensor
information to earth scientists and biologists. We believe that this platform will be an excellent testbed for
demonstrating the relevance of our research, albeit on a limited-size data set. Since it will be used by active
HEC users, the system we are deploying can give us valuable insight into current usage patterns, the utility
of the new functionality described above, as well as added features that would be useful for HEC users.

8.8 Related Work
To design a file system suitable for exascale computing, our research builds upon prior work in large-scale
file systems metadata management and clustering, including content indexing. For HEC users to avoid
wasted time spent adapting to the system, we enable interfaces more directly tailored to the HEC user by
building upon semantic file systems concepts to provide dynamic naming and new file system search and
management interfaces. Specifically we extend prior art in provenance, semantic file systems, as well as
search personalization and security. We therefore discuss how our research relates to prior work in metadata
management, indexing, provenance, and semantic file systems.

8.8.1 Metadata Management
The two fundamental index structures used in file system search are relational databases (DBMS) [23] and
inverted indexes [41, 105]. Continual changes in technology and workload, and a continued reliance on
traditional general-purpose DBMSs, have given rise to a belief that existing DBMS designs are not a “one
size fits all” solution [17, 95, 96]. That is, a general-purpose DBMS cannot simply be tuned and calibrated
to properly fit every workload. Many in the database community have argued and shown [44, 94] that using
a traditional DBMS for a variety of search and indexing applications is often a poor solution and that a
customized, application-specific design that considers the technology and workload requirements of the
specific problem can often significantly outperform general-purpose DBMSs.

DBMSs were designed for business processing in the 1970s, not modern large-scale file system search [87].
DBMSs also have functionality, such as transactions and coarse locking, that are not needed for file system
search and can add overhead [96]. Similarly, as evidenced by their contrasting designs, databases are often
optimized for either read or write workloads and have difficulty doing both well [3, 45, 48]. Our proposed
file system, designed specifically for HEC computing needs, would support both fast search performance
and frequent real-time updates of the index.

Inverted indexes [41, 105] are designed as text databases and are the foundation of content search on the
Internet and in current file system search. An inverted index, for a given text collection, builds a dictionary
that contains a mapping for each of the K keywords in the collection to a list of the locations where the
keywords occur in the file system. For large-scale file systems with many keywords, even with compression,
the dictionary will be far too large to fit in a single machine’s main memory [18]. Thus, they are often either
stored on-disk or distributed across a cluster of machines.

While inverted indexes are the mainstay of modern text retrieval, they are not automatically suited for
file system search. Small-scale systems make trade-offs between search and update performance, and are
either too slow to handle real-time updates or offer unacceptable search performance. Large-scale designs
used in web search applications are typically ineffective for file systems, as they require too much dedi-
cated resources and need not rebuild their indexes as frequently. An HEC-tailored file system, such as the

8-13

one we will develop, would be be needed in order to effectively improve performance to levels acceptable
for exascale HEC systems. Our proposed metadata management builds upon earlier work on the internal
representation of metadata attributes in a file system [31, 73].

8.8.2 Scalable Indexing
While there are file system search tools for both desktop [12, 34, 68, 69] and enterprise [28, 35, 53, 56] file
systems, these tools are intended for smaller systems, on the order of tens of millions of files [33], and cannot
easily scale to billions of files. Moreover, research has shown that their “one size fits all” approach to index-
ing is not effective and that systems need to consider their expected workloads in order to achieve the best
performance [17, 94, 95]. Our investigation into metadata search [61] and current file system workloads [63]
shows that significant benefits can be gained with a specialized solution.

We are not the first to look at how new indexing structures can improve performance or provide ad-
ditional functionality. GLIMPSE [66] used a probabilistic inverted index and significantly reduced index
space requirements by indexing in large blocks rather than storing the exact location of every keyword.
Similarly, document-centric index pruning [20] reduces inverted index size by only indexing postings for
the top KD terms in a file based on a pseudo-relevance feedback step. Thus, the index size can be decreased
by up to 80%, allowing a larger fraction to fit into main memory. Geometric partitioning [60] improves up-
date performance, allowing an inverted index to handle continuous updates. Query-based partitioning [71]
improves cost efficiency by partitioning the index based on term query frequencies and allowing postings
lists for rarely searched terms to be placed on second-tier storage.

We will consider the above approaches, as well as other approaches to indexing content [101] and
metadata in designing our metadata indexes. Our file system, like the Inversion file system [77], considers
reorienting the file system design rather than adding additional features after the fact. Our approach, how-
ever, is not tied to an underlying DBMS, a fact that ultimately renders Inversion unsuitable as a scalable
HEC file system.

Our research into techniques for partitioning the metadata index will build upon proven approaches for
clustering that find patterns and similarities among items [40, 97]. Document clustering has been proposed
to automatically cluster web results [103] and to fit documents into an already existing set of categories [4].
Algorithms such as K-means and its variants can perform document clustering in time linear in the number
of documents [65, 104], making their performance well-suited for our purposes. We also will be examining
clustering algorithms for graphs, such as the min-cut algorithm [24].

8.8.3 Provenance
Tracking, storing, and using provenance has been an active research topic for several decades within special-
ized domains. Systems like Chimera [29] and myGrid [39] track scientific data at the specific application
level, while it has taken more recent efforts to explore the more general applicability of provenance infor-
mation [22]. These efforts focused on databases and are not as general as file system provenance.

Tracking provenance at the file system level has many advantages, such as automatic provenance col-
lection, a deeper view into full provenance that a domain specific system might miss, and potentially taking
advantage of file system structure to aid in more efficient storage of provenance data. The Lineage File
System [84] was one of the first file systems to track provenance information. In contrast to the Lineage
File System, which used a MySQL database to store executables and command line histories, the Prove-
nance Aware Storage System (PASS) [76] stores not only links to executable and other files, but also the
hardware and software environment, a key piece when trying to recreate files or debug issues. Furthermore,
PASS provided a layered architecture that facilitated integration of application-level and system-level prove-
nance, increasing the value of both [74]. The PASS team also leveraged provenance to develop a versioning
file system [75]. In conjunction with this, Holland et al. have designed a path-based query language that
is particularly amenable to posing queries on the complex graphs that arise in provenance databases [47].

8-14

Auxiliary provenance security research has introduced methods for verifying and authenticating changes in
content and ownership [42, 43]. We will build upon this prior art to develop the first file system suitable
for exascale computing that supplies fully-integrated high performance, secure provenance collection and
indexing.

8.8.4 Semantic File Systems
Semantic file systems provide methods for accessing and managing file systems by replacing the traditional
hierarchy with a namespace that can be dynamically created and searched using file attributes and relation-
ships. The first semantic file systems [32, 72] introduced the idea of foregoing the traditional hierarchical
namespace and navigating the file system by means of “virtual directories” that are populated by specify-
ing semantic attributes that each file in the directory must match. SFS [32] was built on top of a standard,
unmodified UNIX file system, but could not offer real-time index consistency. Mogul [72] developed a pro-
totype implementation that replaced the standard directory system with a searchable index; however, the
system did not support personalization or content indexing, and was too slow to be the primary directory
mechanism even in a relatively small file system; our goal is to replace the existing POSIX hierarchy with a
more effective index.

Other systems, such as attribute-based naming [86], the Hierarchy and Content File System (HAC) [36],
Presto [26], and LISFS [80], suggested a mixed model with both hierarchical and semantic attributes, but
suffered from limitations such as dependence on a database back-end or limitations in scale. Haystack [52]
proposed the use of RDF to organize information in the Web, providing both customized views and per-
sonalized search, but did not include relationships between URLs. The pStore system [102] also proposed
storing semantic information in an RDF triple store, and used schemas to manage the different types of
semantic information that might be available about files. pStore envisioned storage of causality information,
as well as versioning, attributes, content semantics, and context. While our storage methodology is different,
all of these types of information are valuable to capture, and will be leveraged in the system we develop.
Our prior work on the Linking File system (LiFS) [7, 8] was designed to take advantage of links between
files, such those offered by provenance systems, as well as per-file metadata, to offer users rich navigation
and search capabilities. Recent work [49] continues to explore semantic access to file systems, but does not
consider provenance and does not offer scalability.

8.9 Preliminary Results
We present preliminary results for a prototype metadata management server that utilizes strategies discussed
in Section 8.4. This prototype will serve as a basis for our integrated architecture as well as a testing platform
for various algorithms. We also show preliminary results from testing different index partitioning methods,
presenting a partitoning method which integrates file system security with partitioning the index. Early
results show that the security aware partitioning method works quite well, indicating that some metadata
attributes may be useful for index partitioning.

8.9.1 Metadata Management
We implemented our prototype as the metadata server (MDS) for the Ceph parallel file system [100]. In our
prototype, each cluster has a maximum of 2,000 directories and a soft limit of 20,000 inodes, keeping them
fast to access and query. We discuss the reasoning behind these numbers later in this section. The K-D tree
in each cluster is implemented using libkdtree++ [64], version 0.7.0. Each inode has eleven attributes
that are indexed, listed in Table 1. Each Bloom filter is about 2KB in size—small enough to represent
many attribute values while not using significant amounts of memory. The hashing functions we use for the
file size and time attributes allow bits to correspond to ranges of values. Each cluster’s metadata cache is
100KB in size. While our prototype implements most metadata server functionality, there are a number of
features not yet implemented. Among these are hard or symbolic links, handling of client cache leases, and

8-15

Attribute Description Attribute Description
ino inode number ctime change time
pino parent inode number atime access time
name file name owner file owner
type file or directory group file group
size file size mode file mode
mtime modification time

Table 1: Inode attributes used. The attributes that inodes contained in our experiments.

(a) Query and insert performance. (b) Write and optimize performance.

Figure 3: Cluster indexing performance. Figure 3(a) shows the latencies for balanced and unbalanced K-D tree
queries, brute force traversal, and inserts as cluster size increases. A balanced K-D tree is the fastest to search
and inserts are fast even in larger clusters. Figure 3(b) shows latencies for K-D tree rebalancing and disk writes.
Rebalancing is slower because it is requires O(N× logN) time.

metadata replication. None of present a significant implementation barrier, and none significantly impact
performance; we will implement them in the future.
Cluster Indexing Performance. We evaluated the update and query performance for a single cluster in or-
der to understand how indexing metadata in a K-D tree affects performance. Figure 3(a) shows the latencies
for creating and querying files in a single cluster as the cluster size increases. Results are averaged over five
runs with the standard deviations shown. We randomly generated files because different file systems have
different attribute distributions that can make the K-D tree un-balanced and bias results in different ways [5].
We used range queries for between two and five attributes.

We measured query latencies in a balanced and unbalanced K-D tree, as well as brute force traversal.
Querying an unbalanced K-D tree is 5−15× faster than a brute force traversal, which is already a significant
speed up for just a single cluster. Unsurprisingly, brute force traversal scales linearly with cluster size; in
contrast, K-D tree query performance scales mostly sub-linearly. However, it is clear that K-D tree orga-
nization impacts performance; some queries in a tree with 70,000 files are 10% slower than queries across
140,000 files. A balanced cluster provides a 33–75% query performance improvement over an unbalanced
cluster. However, when storing close to 200,000 files, queries can still take longer than 10ms. While this
performance may be acceptable for “real” queries, it is too slow for many metadata look ups, such as path
resolution. Below 50,000 files, however, all queries require hundreds of microseconds, assuming the cluster
is already in memory.

The slow performance at large cluster sizes demonstrates the need to keep cluster sizes limited. While
an exact match query in a K-D tree (i. e. all indexed metadata values are known in advance) takes O(logN)
time, these queries typically aren’t useful because it is rarely the case that all metadata values are known
prior to accessing a file. Instead, many queries are range queries that use fewer than k-dimensions. These
queries requires O(kN1−1/k) time, where N is the number of files, and k is the dimensionality, meaning that
performance increasingly degrades with cluster size.

In contrast to query performance, insert performance remains fast as cluster size increases. The insert
algorithm is similar to the exact match query algorithm, requiring only O(logN) time to complete. Even for
larger K-D trees, inserts take less than 10 us. The downside is that each insert makes the tree less balanced,

8-16

(a) Create latencies (b) Query latencies.

Figure 4: Metadata clustering. Figure 4(a) shows create throughput as maximum cluster size increases. Performance
decreases with cluster size because inode caching and Bloom filters become less effective and K-D tree operations
become slower. Figure 4(b) shows that query performance is worse for small and large sizes.

degrading performance for subsequent queries until the tree is rebalanced. Thus, while inserts are fast, there
is a hidden cost being paid in slower queries and having to rebalance the tree later.

Figure 3(b) shows latencies for writing a cluster to disk and rebalancing, the two major steps performed
when a dirty cluster is written to disk. Surprisingly, rebalancing is the more significant of the two steps,
taking 3− 4× longer than writing to disk. The K-D tree rebalancing algorithm takes O(N× logN) time,
accounting for this difference. However, even if we did not rebalance the K-D tree prior to flushing it to
disk, K-D tree write performance is not fast enough to be done synchronously when metadata is updated
as they can take tens to hundreds of milliseconds. Since a K-D tree is always written asynchronously, its
performance does not affect user operation latencies, though it can impact server CPU utilization.
Metadata Clustering. We next examined how different maximum cluster sizes affects performance and
disk utilization. To do this, we evaluated the create and query throughputs as the maximum cluster size
increases. The maximum cluster size is the size at which our prototype tries to cap clusters. If a file is
inserted, it is placed in the cluster of its parent directory, regardless of size. For a directory, however, a new
cluster is created if the cluster has too many directories or total inodes. Maximum cluster size refers to the
maximum inode limit; we set the maximum directory limit to 1/10th of that.

Figure 4(a) shows the total throughput for creating 500,000 files from the Web trace over five runs as
the maximum cluster size varies from 500 to 40,000 inodes. As the figure shows, Create throughput steadily
decreases as maximum cluster size increases. While the throughput at cluster size 500 is around 2,800
creates per second, at cluster size 40,000, which is an 80× increase, throughput drops roughly 50%. Disk
utilization is not the issue, since both use mostly sequential disk writes; rather, the decrease is primarily due
to having to operate on larger K-D trees. Smaller clusters have more effective metadata caching (less data
to cache per K-D tree) and Bloom filters (fewer files yielding fewer false positives). Additionally, queries
on smaller K-D trees are faster. Since journal writes and K-D tree insert performance do not improve with
cluster size, a larger maximum cluster size has little positive impact.

Figure 4(b) shows that query performance scales quite differently from create performance. We used
a simple query that represented a user search for a file she owns with a particular name (e. g. filename
equal to mypaper.pdf and owner id equal to 3704). We find that query throughput increases 7− 8×
as maximum cluster size varies from 500 to 25,000. When clusters are small, metadata clustering is not as
helpful because many disk seeks may still be needed to read the metadata needed. As clusters get larger
disk utilization improves. However, throughput decreases 15% when maximum cluster size increases from
30,000 to 40,000 files. When clusters are too large, time is wasted reading unneeded metadata, which can
also displace useful information in the cluster cache. In addition, larger K-D trees are slower to query. The
sweet spot seems to be around 20,000 files per cluster, which we use as our prototype’s default.

8-17

8.9.2 Scalable Indexing: Security Aware Partitioning
For search to be secure, a file system needs to be aware of a combination of emphread, write, and execute
permissions for all security levels. For a user on a UNIX system to access files or subdirectories within a
directory, the directory’s execute bit must be set for some role which the user fulfills. If the other execute bit
is set, any user not the owner or a member of the group can access files in or below that directory. Otherwise
the user must be the file’s owner or a member of the group, and have the corresponding execute bit set.
Further, the execute bit must be set on every directory preceding the current one in the path. In other words,
access is determined by the logical AND of the access permissions of every directory in a file’s path, relative
to a specific user’s roles.

However, for a user to actually view the contents of a directory, they must not only have execute per-
missions, but read permissions as well. Unlike execute, read does not require permissions all along the
path. It is possible to read the contents of a directory as long as the user has read permissions on the last
directory in the path. This allows security operations such as permitting users to own a directory without
being able to list the contents of directories above that one. For instance, a system may choose to not let
users view which other users have directories in /home, even though the users themselves are the owners
of /home/<username> directories.

Therefore, Security Aware Partitioning partitions the file system according to group and user security
permissions. The algorithm walks the file system in a breadth first search. Access permission is determined
by examining all permissions in the directories above the file or directory in question. If the permissions
on the current file or directory are more restrictive than that of the current partition or the user or group
has changed, then a new partition is created. Subfolders and files are added until another restriction in
permissions is encountered. This ensures that all files and directories in a given partition share the same
permissions.

In order to evaluate the effectiveness of Security Aware Partitioning, we compared it to the following
partitioning algorithms: a greedy time based algorithm, an interval time based algorithm, a user based al-
gorithm, Cosine correlation clustering, Cosine correlation clustering with Latent Semantic Analysis (LSA)
– SmartStore [50], and a greedy depth first search partitioning algorithm – Spyglass [61]. We ran each
alogrithm over a crawl containing file server metadata and evaluated the resulting partitions using the fol-
lowing criteria: size of the partitions, runtime and memory usage (evaluated using Big-O run times in order
to account for variations in the algorithms), the actual files within the partitions, partition entropy, and in-
formation gain. Partition entropy measures the variance of attribute values in a given partition, and was
calculated using the Shannon formula for information [90]. Information gain measures the amount of in-
formation you gain about an attribute by being in a given partition, and was calculated using Quinlan’s
description [82]. These criteria were selected because it allows the partitioning algorithms to be compared
without building complete systems with working implementations of each algorithm.

Security Aware Partitioning is linear with respect to the size of the data set. Files and directories do
not need to be compared to other files/directories, just to the security permissions of the current partition.
Because UNIX style permissions rely on the hierarchy, we do a recursive tree descent. The permissions of
each file in the path are stored on the stack, for a memory requirement of log(n), where n is the number
of files. The wide branching factor of directories makes the constants quite low in practice. This memory
usage is a constraint specific to UNIX and would not necessarily apply to other architectures.

Partition sizes directly impact the effectiveness of search. If the partitioning algorithm results in a large
number of small partitions, then finding relevant files may result in many calls to the disk in order to load all
of the required indexes. By contrast, if partitions are too large then the index cannot easily fit into memory.
An ideal partitioning algorithm will result in most partitions being near the maximum size, with a fairly low
variance in size. We show the mean, median, and variance for partition size in Table 2. With the exception
of the greedy algorithms, which use a fixed number of files per partition, all of the algorithms had a large

8-18

Table 2: SOE Size Statistics
Greedy DFS Greedy Time Interval User Security Cosine LSA

Number of partitions 81 64 8 384 29479 131 1370
Mean size 85203 107835 862683 17973 234 5037 52683
Standard Deviation 44487 43634 2163134 128252 3309 36776 292193

number of smaller partitions and a few large partitions. This is not unexpected. The skewed nature of
metadata has been explored by Leung [61], and any algorithm which relies on it is likely to be somewhat
skewed in distribution. This means any non-greedy algorithm will construct many smaller indexes that will
later need to be accessed. However, this cost can potentially be mitigated through clever on-disk layout and
data structures. Non-greedy algorithms also result in partitions which are over 100,000 files and may be too
large for indexing. In this case, a secondary criterion (such as time), could be used to split the partition into
more manageable sub-indexes.

Security Aware Partitioning has a low standard deviation, suggesting that partitions tend to be approxi-
mately the same size. However, the mean size is at least an order of magnitude lower than any of the other
algorithms. This means Security Aware Partitioning creates a large number of small partitions. Since the
partitioning is based on hierarchy, this algorithm might benefit from merging partitions across hierarchical
boundaries if they have a matching set of users who can access them. We plan to investigate strategies for
merging partitions.

Partition entropy measures the “goodness” of a partition, by measuring the entropy per attribute within
each partition. This measures the number of values of an attribute in a given partition. A low entropy
suggests that the attribute values within that partition are somewhat homogeneous – there are only a few
attribute values in that partition. For entropy calculations, we did not include the path name or the inode
number, since these will almost always be unique to a specific file or directory. In Figure 5 we present the
cumulative distribution function of entropy for different attributes, with each algorithm displayed. Here, a
fast growth rate implies that most of the entropy for that algorithm was low, and therefore the algorithm will
be more efficient at retrieving data related to that attribute. We have selected a few attributes from the SOE
data to display, based on common user queries: specifically file type and user id.

Figure 5: CDFs of entropy by mode, mtime, type, and uid for percentage of partitions. Algorithms which grow more
quickly in this graph are better for search. Note that the security algorithm grows quickly, meaning has excellent
entropy for all attributes.

8-19

8.10 Conclusion
For HEC and scientific computing applications there is an urgent and growing need for improved data man-
agement. Ultimately, the goal is to reduce the amount of time and effort spent by scientists and similar HEC
users managing and moving their data. To enable more powerful and effective data workflow management
we will provide a novel file system design. Our approach allows the automation of rich metadata and prove-
nance collection within a general purpose filesystem. The choice to implement a new file system allows us
to provide a data management solution that can accommodate legacy data while offering a more adaptable
and accommodating interface to the data.

8.11 Project Timetable
Year 1. Research goals for the first year include:

• Test the scalability of existing methods for dynamically extracting and validating metadata,
content-based metadata, and provenance, and investigate new approaches for better perfor-
mance in exascale systems.

• Develop algorithms for automatically generating statistics about the system including metadata
and provenance information, and the impact having these statistics has on indexing.

• Further evaluating the needs of HEC users and the specific workflow challenges in HEC sys-
tems and expanding our interactions with the scientific computing communities by working
with researchers at HEC facilities.

• Explore algorithms for graph homomorphism to evaluate suitability for file systems and scala-
bility to billions of nodes.

• Develop designs for large-scale indexes that leverage non-volatile memories for both indexing
and fast updates.

• Explore new hardware technologies as the basis for an exascale system and identify the chal-
lenges in implementing and optimizing the integrated metadata server on such hardware.

Year 2. Research goals for the second year include:
• Integrate dynamic extraction into a file system containing a partition-based metadata server
with provenance and content-based metadata.

• Refine a statistics generation algorithm for exascale systems and integrate it into the file system.
• Implement experimental prototypes, and develop initial filesystem design.
• Continue the investigation and development of new approaches for improving metadata man-
agement in exascale systems.

• Continue developing automatic statistics generation and gathering algorithms.
• Continue evaluation of new storage technologies and integration into the filesystem design.
• Further evaluate the needs of HEC users and evaluate workflow and interface elements.

Year 3. Research goals for the third year include:
• Prototype testing and further development, including evaluation of partitioning.
• Experimental evaluation of hierarchical indexes and related techniques to improve scalability
of searching across more than 106 partitions.

• Conduct further experiments on the metadata server to demonstrate scalability and to determine
an optimal partitioning scheme.

• Develop an integrated search algorithm that uses the system statistics, metadata, and prove-
nance to provide efficient and accurate results, and continued evaluation of its effectiveness for
HEC users.

• Continue evaluation of new storage technologies and their integration into the filesystem design
and prototype.

8-20

