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Population-level neutral model already
explains linguistic patterns
In customizing the neutral model for language trans- information and then processing this to arrive at an opti-
mission, Reali & Griffiths [1] have added a new,

‘Bayesian’ learning interpretation to a neutral model

that has been used in cultural evolution studies for

some time (e.g. [2–6]). While Reali & Griffiths

[1, p. 435] dismiss previous applications of this neutral

model as being used merely ‘as a metaphor’, it has been

explored in quantitative detail, and applied even to word

frequencies [7]. We therefore question whether this

fairly complex description of Bayesian learning is necess-

ary, as it does not change the results of the model, and

runs the risk of obscuring the advances made both

through careful modifications and wider applications of

this powerful model.

The Reali & Griffiths [1] version of the model is mathe-

matically equivalent to previous versions, in representing a

set of N variants per time step, with the next generation of

N variants constructed by repeatedly sampling variants

from the previous time step, with some probability of

‘mutation’, i.e. introduction of a variant of a unique new

variant. Reali & Griffiths [1] apply the model in a novel

sense to individual cognition, whereas it has previously

been considered in terms of a population of fixed size N,

which is replaced by N new agents in each time step. In

this population version, each new individual either copies

an existing variant from the last time step (with probability

proportionate to the previous choices of agents), or

chooses a new variant. With probability 1 2 m, an incom-

ing agent copies its variant from that of an agent within the

previous time step, or else with probability m, the agent

innovates by choosing a unique new variant at random.

This model has already been shown to yield the inverse

power law in the probability of variant frequencies that

Reali and Griffiths report, from which the other inverse

power law, in word frequency versus replacement rate,

also follows. We demonstrate this briefly below, in order

to show how the discussion of the model has advanced

beyond this, including the incremental addition of a

new extra parameter, ‘memory’ [8].

Before we consider the model predictions, however, we

address the question of the psychological plausibility of

the assumptions that are made about agent behaviour.

The Bayesian learning approach assumes agents use ‘a

rational procedure for belief updating that explicitly rep-

resents the expectations of learners’ (Reali & Griffiths

[1, p. 430]). This raises a very important topic in social

sciences. Standard economic theory, for example,

assumes rational agents capable of obtaining all relevant
ompanying reply can be viewed at http://dx.doi.org/10.1098/
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mal decision. The less demanding postulate of bounded

rationality restricts access to full information, but the

hypothesis of optimal decisions is retained (subject to

information constraints).

Individual rationality is not the only way, however, that

learning can be represented (e.g. [9,10]), and alternative

hypotheses have support both in particular applications

and in the wider literature. At the other extreme, for

instance, the assumption of literally ‘zero-intelligence’

agents, based on the particle model of physics, has pro-

vided a powerful explanation of many population-scale

phenomena, such as financial asset price changes [11].

Daniel Kahneman [12] argued in his Nobel prize lecture,

awarded for his work in economic psychology, that ‘the

central characteristic of agents is not that they reason

poorly, but that they often act intuitively. And the behav-

iour of these agents is not guided by what they are able to

compute, but by what they happen to see at a given

moment’. Heuristically, this seems perfectly consistent

with a population-level view of learning, rather than the

standard rational-individual model.

We might, therefore, alternatively assume that agents

(including language speakers) observe the relative popu-

larity of previous choices among other agents, and copy

in proportion to these popularities, with a small prob-

ability of making an innovative choice. This population

view, which is able to offer a good account of a wide

range of cultural phenomena, assumes that agents are

indifferent—‘neutral’—to the particular agent that they

copy. The result of this neutrality is that agents tend to

copy variants in proportion to the previous choices

made by other agents; a more popular choice is more

likely to be copied than a less popular one. In the special

case where m ¼ 0, the model is formally equivalent to

a process of preferential attachment (e.g. [13]).

This population view also can provide extra flexibility

for modifying the model. In the Bayesian learning rep-

resentation, for instance, each individual commits

previous experience to individual memory. In the popu-

lation view, previous experience is copied directly from

other individuals, and ‘memory’ becomes a useful

added parameter. In our own version [8], this variable

memory, designated as m, allows agents to copy from m

previous time steps. This effectively means that the orig-

inal variants can ‘linger’, because even if replaced in the

current time step, they might still be ‘remembered’

again within m subsequent time steps.

Adding this memory parameter adds both flexibility

and power to replicate real-world data patterns, including

the three that Reali & Griffiths [1] report; in the inverse

power law probability distribution of variant frequencies,
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Figure 1. The effect of the simple memory parameter on
replacement rate under the simple neutral model, with N ¼
1000, and m¼10%. Here we consider an original vocabulary
of 100 popular words, and how those words are replaced over

time under the model (note that an ‘S’ curve does not follow
from the simpler version of the model, where m ¼ 1). Dashed
line, m ¼ 1; thick grey line, m ¼ 5; thin grey line, m ¼ 10;
thin black line, m ¼ 15; thick black line, m ¼ 20.
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and in ‘S’ curves of replacement. Furthermore, by keep-

ing the model simple in description, it is then easier to

explore different phenomena, such as the flux of variants

on a ranked popularity list [8,14]. We can visit each of the

three main results of Reali & Griffiths [1] to show the

advantages.

Firstly, Reali & Griffiths [1] fit their results to a power

law probability distribution with exponent 21.7. Among

the many processes that can produce Zipf ’s laws [15],

the simpler neutral model yields this very same power

law exponent (between about 21.6 and 21.8) when var-

iants are counted cumulatively (e.g. [16]). Notably, the

exponent of best fit varies with the choice of mutation

rate, and in fact as we move away from Nm ¼ 1 (N is

population, m is mutation), a power law no longer fits

[17]; increasing Nm tends to reduce highest frequencies

and push the distribution towards a an exponential distri-

bution, whereas decreasing Nm increases the highest

frequency, ultimately to a ‘winner-take-all’ distribution

at Nm ¼ 0 [3,8,18]. In addition, the added memory par-

ameter m enables the modified neutral model to

generate a much larger family of right-skew frequency

distributions [8].

Secondly, Reali & Griffiths [1] report an inverse power

law relating word frequency to replacement rate, compar-

able to real languages [19]. This has also already been

shown in the population version of the model [14],

albeit in a slightly different way. Consider a ranked list

of the V most popularly used variants in a particular var-

iant pool, such as the V most popularly used words in a

language. Regarding this list of variants, ranked in order

of popularity from 1 (most popular) to V (least popular),

the turnover on the entire list (word replacement rate

among the top V words) is simply proportional to the

size, V, of the list—as has been shown through simulation

[14,20] and analytically [21]. The turnover just at rank V

is equivalent to the turnover on the entire list from rank 1

to rank V, because each new entry must, at some instant,

displace the one at the bottom or Vth position (this turn-

over decreases moving up the rankings, because reaching

rank V does not guarantee reaching rank V 2 1). Zipf ’s

law implies that the frequency of a word at rank V has

usage frequency proportional to V -a, meaning the prob-

ability distribution function (PDF) has an exponent of

–(1 þ 1/a). Plotting turnover at position V on the y-axis

versus the word frequency V -a on the x-axis therefore

yields an inverse power law with negative slope 1/a,

which is just the slope of the PDF (1 þ 1/a) minus 1.

Reali & Griffiths ([1], fig. 2) show word frequency PDF

with exponent 21.74, so we expect a plot of turnover

versus word frequency to have a power law slope of

20.74, which is quite close to their demonstrated slope

of 20.8.

Thirdly, Reali & Griffiths [1] demonstrate ‘S’ curves of

replacement that follow naturally from their rational-

individual version of the model, following Wright–Fisher.

This is an important realization, and by allowing for a

population view, we can (i) add the memory parameter

to gain flexibility in the resulting turnover, and (ii) apply

to multiple variants in such contemporary representations

as the ranked popularity list. To see why, consider an orig-

inal pool of V different variants at time zero, and let x(t) be

the number of new variants replacing this original pool.

These V variants could represent the different words in a
Proc. R. Soc. B (2011)
vocabulary, for example, or perhaps different possible

grammatical rules in use. This replacement rate is pro-

portional to the constant turnover rate, z, times the

diminishing proportion (1 2 x/V) of original variants

remaining in the pool:

dx

dt
¼ z 1� x

V

� �
; ð1Þ

which is a separable differential equation, with a simple

solution

xðtÞ ¼ V 1� e�zt=V
� �

: ð2Þ

This is not an S curve, because even though it asymptoti-

cally approaches V over time, it begins quickly (when x ¼

0, dx/dt ¼ z), rather than beginning slowly and speeding

up. Adding the memory parameter, however, for certain

combinations, such as m ¼ 10 time steps and m ¼ 10%,

enables the modified neutral model to generate an S

curve of replacement (figure 1).

In summary, the basic versions of the two models are

mathematically the same, but radically different in

interpretation: one is aimed at populations of simple imi-

tators, whereas the other is focused on rationally based

individual learning through iterated sampling. We argue

that there are two reasons not to abandon the population

representation. Firstly, it keeps things simple, and modifi-

cations and advances from this model—e.g. adding new

extra parameters such as copying bias [6] or memory

[8]—are more easy to benefit from and to apply generally.

Secondly, in many situations of collective behaviour—

which includes language, by its very definition—a

representation of very simple social learning in a popu-

lation may be more realistic than a model of individual

rational actors. In any case, as vast sets of new word fre-

quency data become available [22], the simplest, most

flexible model has the best chance of generating insights

across the range of social evolutionary phenomena

where the same patterns occur.
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