<div dir="ltr"><div>Professor, </div><div><br></div>In the proof of Theorem 4.23, <div><div> 1. there is no "1/2" in the exponential in the definition of G(tau, y).</div><div> 2. there is no "dy"s in the double integrals.<div> 3. two signs are wrong in the last equation, which has 0 in the right side.</div><div><br></div><div>Hiro</div></div></div></div><div class="gmail_extra"><br><div class="gmail_quote">On Fri, Nov 10, 2017 at 4:21 PM, Gautam Iyer <span dir="ltr"><<a href="mailto:gi1242+944@cmu.edu" target="_blank">gi1242+944@cmu.edu</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><span class="">On Fri, Nov 10, 2017 at 04:12:31PM -0500, Jordan Giebas wrote:<br>
<br>
> Page 11, eqn (4.3): the upper bound on the third sigma should be j-1,<br>
> not i -1.<br>
<br>
</span>Indeed, fixed. Thanks again.<br>
<span class="HOEnZb"><font color="#888888"><br>
GI<br>
<br>
--<br>
Why did the tomato turn red? Because it saw the salad dressing.<br>
</font></span><div class="HOEnZb"><div class="h5">______________________________<wbr>_________________<br>
mscf-944 mailing list<br>
<a href="mailto:mscf-944@lists.andrew.cmu.edu">mscf-944@lists.andrew.cmu.edu</a><br>
<a href="https://lists.andrew.cmu.edu/mailman/listinfo/mscf-944" rel="noreferrer" target="_blank">https://lists.andrew.cmu.edu/<wbr>mailman/listinfo/mscf-944</a><br>
</div></div></blockquote></div><br><br clear="all"><div><br></div>-- <br><div class="gmail_signature" data-smartmail="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><span style="font-size:12.8px">Hiroyuki Toda</span><br></div><div>MSCF student <span style="font-size:12.8px">(MS in Computational Finance) </span><span style="font-size:12.8px">at </span><span style="font-size:12.8px">Pittsburgh Campus</span></div><div><span style="font-size:12.8px">Carnegie Mellon University</span></div><div><span style="font-size:12.8px">Email: <a href="mailto:htoda@andrew.cmu.edu" target="_blank">htoda@andrew.cmu.edu</a></span></div><div><span style="font-size:12.8px">Tel: 412-436-6196</span></div></div></div></div></div>
</div>